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THE EQUATIONS O F  MOTION FOR OPTIMIZED PROPELLED 

MODIFICATIONS O F  THESE VARIABLES 

By William E. Miner 
Electronics Research Center 

FLIGHT EXPRESSED IN DELAUNAY AND POINCARB VARIABLES AND 

SUMMARY 

This document presents  methods for  developing the ordinary differential equations 
(0.d.e.) of motion in canonical form equivalent to the forms of Delaunay and Poincare'. It 
a lso presents modifications to these forms so that three variables, which are constants of 
motion, result while the forms  remain canonical. 

The equations of motion are for a vehicle propelled by constant thrust magnitude with a 
constant mass  flow rate.  The vehicle is moving in a central force field. The trajectories 
are optimum in the sense of classical calculus of variations in a neighborhood definable by 
the boundary conditions of the specific problem. Specific problems are not discussed in this 
document. 

The value of the document lies in two major areas: 

1. The possible economics in numerical calculations which may result f rom using 
these ordinary differential equations, and 

2.  The application of the general perturbation theory of classical celestial mech- 
anics to approximate solutions of these ordinary differential equations. 

This document has been written to record the resul ts  of the investigation and was not 
meant to be a tutorial treatment of the subject. For such treatment, references 1 through 4 
are recommended by the author. 

1. Bliss, G.A. : Lectures on the Calculus of Variations. University of Chicago Press, 
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I. INTRODUCTION 

This report addresses itself to  the development of the ordinary differential equations 
(0.d. e.) governing the motion of a vehicle propelled by constant thrust magnitude with con- 
stant mass flow rate in a central force field. The trajectories are optimum in the sense of 
classical calculus of variations. The variables used to  define the trajectory are canonical 
and based on the solution of the trajectory when the thrust magnitude is zero.  

The Hamiltonian for the full problem is given by 

2 2  sec e tan e + plu W 
2 

W 
2 

H = A l (  5 r + r 3 cos 2 9 - S ) - h 2 ; 2  r 

V W 2 F + p 2 - z  + P~~ sec e - X 7 r  -+ - A(X) m r r 

where 

2 2  (w/r sec e = 6 
2 2 2  

A(X) = + r2 4 + r cos 9 x3 

and X1, X2, X3, Ply p2, p3, and A 7 a r e  the Lagrange multipliers. 

We consider here  

H = Ho + H1 

F 
m where Hl = - A ( X ) ,  and we present various solutions of Ho (base problem). 

This report proposes only to  present methods of deriving the various transformations 
and differential equations. Only enough detail is given so that the results may be  reproduced. 
This paper is concerned only with methods. The basic theory may be found in the references. 

The approach was based on solving the problem for the Delaunay variables, and then 
transforming the Delaunay variables t o  other variables. This was accomplished with ease. 
However, the inverse sets of transformatiOKcreated problems in defining the new variables 
in the initial coordinates of (r, 8, $I, u, v, w, X, 7, X7). These were algebraic problems 
and were solvable. However, this does not assure  a correct  answer. Therefore, a more 
direct approach was sought. Noting that these transformations form a group, one is assured 
of a direct transformation from the initial coordinate systems to the final desired coordinate 
system. The following diagram illustrates the problem: 
2 



In the diagram, the dashed lines represent the first approach and the solid ones the 
approach used in this document. 

The problem given by Eq. (1) has four constants: the Hamiltonian and three others. If 
these last three constants a r e  made to be coordinates in the transformed sense, then there 
a r e  three less  integrals to evaluate in numerical integration o r  in perturbation procedures. 
Therefore, in two of the sets of variables these a r e  made coordinates. 

The author desired one transfer function in which the constants were to be modified for 
all four cases.  This was not accomplished. However, two transfer functions did do the job 
except that for the modified Poincar6 variables added transformations are needed. The 
Delaunay and Poincar6 variables are on state only. One transfer function, based primarily 
on state, serves  for this type of transformation. The cases with the three constants were 
dependent for some variables on both state and Lagrange multipliers. One transfer function, 
with additional transformations for the modified PoincarG variables, serves  for this type of 
transformation. 

The approach used shortens the path to solutions of the problem but does not eliminate 
much detailed algebra and differentiation. Therefore, su port for this type of work was 
obtained by use of FORMAC. * It was decided that FORM& could be used favorably for the 
following steps in the development: 

Obtaining the partial derivatives of the generating function, with respect to  the 
coordinates Q and substituting them into the Hamilton-Jacobi partial differential 
equation to confirm the generating function; 
Obtaining the first partial derivatives of the generating function with respect 
to the transformed momenta [ K (a)] for the transformed coordinate L o r  p; 
Obtaining the second partial derivatives of the generating function with respect 
to the coordinates and momenta to display information for forming the ordinary 
differential equations of the full problem. 

1. 

2. 

3. 

The above work was supplemented by hand calculations at points so that the programs 
could remain general and manageable. 

*There were many detailed discussions and close liaison between the author of this document 
and M r .  D. Valenzuela of IBM. His report on the FORMAC work is in preparation. Fur- 
ther information may be obtained from M r .  Valenzuela, IBM, 1730 Cambridge Street, 
Cambridge, Massachusetts. 



II IIIIIIIIII 

The results of this work have the following potential uses: 

1. Development of approximate closed-form solutions for trajectory problems by 
using the methods of celestial mechanics perturbation theory; 

2. Study of the characterist ics of types of t ra jector ies  using the methods of celes- 
tial mechanics; 

Development of computer programs for numerical integration of the ordinary 
differential equations. 

3 .  

Because of the canonical form th is  formulation should be easily expanded to  include 
variations of the gravitational field. Also potentially large steps may be made in numerical 
integration because of the form of the variables. 

The information in sections TI and III has been treated separately because of the designa- 
tion of the variables as momenta o r  coordinates. This designation is different for the 
Delaunav and Poincar6 variables and the modified variables. The organization of the text 
follows: 

1. 

2. 

3. 

4. 

5 .  

6.  

7. 

8. 

9. 

The Hamiltonian for the base problem is repeated. 

A transformation to designate convenient momenta and coordinates is made 
for this set of problems. 

The Hamilton-Jacobi equation for this se t  of problems is presented. 

An indicated procedure for  solution is presented and the general generating 
function for the transformation is presented. 

The coordinates a r e  then presented in transformed form.  

A discussion of the ordinary differential equations is given. 

The perturbation function is presented. 

The logic for selecting the Ki(aj) for the particular coordinates is given (either 
Delaunay or Poincar6) and the generating function for the transformation 
presented . 
Steps 5, 6, and 7 a r e  then repeated. 

The procedures for obtaining the information presented a r e  not unique. The choice of 
the procedures used was based on the following: 

1. The use of FORMAC to  minimize e r ro r s ;  

2. The ease in presentation; and 

3. The overall logic of the approach. 

4 
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GLOSSARY 

r = radius vector t o  vehicle 
8 = angle out of reference plane (emax = inclination) 

+ = angle in reference plane 

u = momentum conjugate to  r (r) 
2 '  v = momentum conjugate to  0 (r 
2 w = momentum conjugate to  4 (r cos' e $) 

t = t ime 

e) 

o = negative of mass flow rate (- m) 
k = gravitational constant 

m = mass 
X = Lagrange multiplier connected to u 
X = Lagrange multiplier connected to v 

X = Lagrange multiplier connected to  w 
X = Lagrange multiplier connected to m 
p 1  = Lagrange multiplier connected to r 
p2 = Lagrange multiplier connected to  e 
p3 = Lagrange multiplier connected to 9 

1 
2 

3 

7 

The above t e rms  are basic to  this document. Other te rms  are included, but since the 
thesis of this work is based on a series of variables, no attempt will be made to  define each 
and every one because of the confusion it would probably create.  

5 



II. DELAUNAY AND POINCARE. VARIABLES 

This section presents a method of deriving a generating function in t e r m s  of parameters 
(K) which are to be regarded as functions of the new momenta of the problem. The base 
two-body Hamiltonian for the trajectory problem may be written as: 

2 2 2  2 v + w  s e c 8  k 
r' r 
-- - T )  - x2 sec2 e tan e * o = %  ( 

where 

0- = -m = constant 

U = r  

W (sec2 e) = 4 
r 

XI, 5, pl, e, p3, and X7 are the Lagrange multipliers. 

The first step will be to transform this equation by the following transfer function: 

S = PI\ + P 2 5  + P3x3 c P4r + P5p2 c P6p3 + P7m (4) 

The results of this tranformation give the relationships: 

as 
1 1' aQ1 ' 

as Q = A  - v = p  =-  
2 2  2 aQ2 

as 
-w = p3 = - aQ3 3 3  

as 
p1 P4 = - 

aQ4 
as 

- e  = p 5  = -  aQ5 
as 

as 

-u = = - Q = A  

Q = X  

Q4 = r 

Q5 = 132 

Q6 = P 3  -' = '6 = -  aQ6 

6 Q7 = m 7 = p 7 = -  aQ7 

(5) 



where the partial derivitives are listed for  ease in writing the Hamilton-Jacobi equation 
which follows: 

2 as sec ~ 

as aQ5 as 
- ‘6 a&3 7- 

We note that Q7, Q3, and t do not appear in the equations, so that, by separation of 
variables, we have. 

as as m =  K1, u- 

This new partial differential equation has the following differential equations of the 
characteristic s t r ip  : 

2 as as q sec 
a’s =-.”3 

Q: 

2 + < s e c  2 as k ]  
i s  - 
a-Qi= - - 2 -  Q34 Q4 

Q 4 = - -  as 

2 as 
m 5  

sec 
a’s 
- =  - K 3  7 



where the dot indicates the derivative with respect to a parameter T 

U = d  as 
(aQi dT aQi 

These equations are simply the two-body equations which we integrate as follows: 
From Eqs. (8) and (9), we obtain an integral. 
Next, we combine Eqs. (10) and (11) to obtain a second integral. The next integral is ob- 
tained f rom Eqs. (9) and (12). The last integral is obtained by use of the solution of Eqs. 
(8) and (9) in combination with Eqs. (9) and (11). 

We substitute this integral into Eq. (10). 

The solutions are: 

2 2 2 U L v 2  
aQ5 

(&) = < - K 3 s e c  
aQ2 

-1 
= sin sin i sin (K7 - f )  & 

aQ5 

where 

$ - kQ4 

‘ O s  = Q 4 J W  

/=- 
K4 

sin i = 

The t e r m s  u,  v ,  f ,  and i used in the above equations are to be considered as symbols and 

Eqs. (13) through (17) substituted into the Hamilton-Jacobi equation (6) yield an 

not variables . 

expression for m. 
8 

aQ4 



On integration one obtains: 

r 1 

- Q 1 u - Q 2 v  
k -1 k - K5 Q4 S (Q 4 ) - - (K1 - K2)[% K5 - ‘K35/2 ‘Os 

cos i sin(K7 - f )  

- sin i sin (K7 - f )  

- 
-1 + Q6 - K 6 +  sin 

2 2  [ 
sin (K7 - f )  -1 + Q  sin 5 sin i 

This equation was combined with those derived before to  obtain a generating function 

1 -1 k - K5Q4 

-1 

K2 
S = Klt + 7 Q + (K1 - K2) 7 

2k Kf 
‘4 Q4 

+ - - 7 + Q5 sin [ s i n  i sin (K7 - f)] 

cos i sin (K7 - f )  
-~ -1 sin i cos (K7 - f )  

-K6 + sin 
2 2  - sin i sin (K7 - f )  

4 

1 - sin i sin (K7 - f )  
2 2  

- -  
where S is considered as S(K,Q, t) = S and 

2 2  2 K~ = - H ~ ,  K~ = 0 x7, K = w, K = v + w sec2 e 3 4 

(19) 

1 

The first partials of S with respect to Ki produce the conjugate variables Li 
a - Li, i = 1, 2.. . .7)- These are presented below and information to  reproduce (Tlq - 

them will be given in a document t o  be published by IBM (see footnote on page 3). 

9 



10 

-1 

Q7 L = - +( t -L1)  
2 r  

cos i cos (K7 - f) cos i s in  (K7 - f )  
- Q5 __  - 

1 - sin2 i sin2 (K7 - f)] 3’2 
L3 = Q2 

s in  (K7 - f) COS (K7 - f) 

2 2  - &3 
.~ 

1 - s i n  i s i n  (K7- 

s in  i cos i s in  (K7 - f )  s in  i c o s  (K1 - f)  2 

+ ‘6 

__ 
+ &5 1 - s i n  2 2  i s i n  (K7-f) 

cos  i 

L7 = Q2 

L6 = - Q 6  

3 + - (t - L1) Q4 K4 L7 (K: - kQ4) 

2K5 
1 

2u 2 u ( k 2 - K t  K5)Q4 
L = Q - +  

2 
Q4u -- 3u (t- L1)+ - 

Kg 

u (K4+ 2 kQ4))  2~;5 { 
+ 

(k2 - K: K5) 
+ 



sin i cos (K7-f) K4Q1 + -  -Q2 
- sin2i sin2 (K7-fj UQ 

QIK: u 
@ (kL - K: K5) 

(< + kQ4)u 

(< - kQ4) K4 

Q4(kz - K4K5) B 
L 4 = .  . - cos i (L3 + Q3) - p1 

sin i cos (K7-f) 

2 
-Q2 

2/1 - sin2 i sin (K7-f) 
+ L7Q4(k' - K:K5) 

The ordinary differential equations will be developed here by taking the time differentials 
of the transformatio_ns and substituting in the original ordinary differential equations of r,  8, 
4, u, v, w, m, A, p, and A . One notes that all t e r m s  will  contain F as a multiple. These 
ordinary differential equatians are presented for reference below and a r e  used in the later 
discussions: 

2 2  w s e c  9 - k 
r3 7- u =  

2 2 F r A  
2 - sec2 e tan e v =  m A ( X )  7 

2 ~r 5 cos2 e 
mA ( x )  w =  

r = u  

V e =  Fz 

2v 1 
p2 '2 i, = -xl --$ - 

~ - 

sec2 e 
e -  p3 7 

2~ sec2 e + 3 'z 2w sec 2 
i 3  =-%F r 

11 



r2 ki s i n e  cos  e 2 F 
- p 3  7 2 s e c  e t a n o +  A ( X )  

0 

The ordinary differential equations for  Y(Ki) are easily derived by combining Eqs. (20) 
and (22) in the following order :  $ 7  K3, K4’ Kg7 Kg7 K7, and K1. One then obtains the 
following expressions: 

12 

F Q ~ Q  cos2e 
4 3 . . -  

m A pC) 

&24b Qz + K3 Q3) 

8, = 

2 Q: K3 tan e (Q2 K3 - v cos 8 Q3) 

K7 = m { K 4 ( < - < )  



where 

K4 sin i cos (K7 - f )  21 - sin 2 . i  sin 2 (K7 -f)  

2 2k + =-%+€q-q 
2 2 cos 8 = 

sin0 = - sin i sin (K7 - f )  

1 - sin i sin (K7 - f )  J 
- 

P I Q l  + Q5&2 - Q3L6 + e K, = T c A ( X )  F + 
mA ( X )  Q7 

"1 2K3 Q 2 K 3 t a n 8 - u Q 4 ( Q 2 + Q 3 c o s  2 2 2  O ) + c o s 0 s i n 0 v Q 3  
+ Q l Q 3 T - %  3 

where p1 and A ( X )  will be defined later. All other variables are K's, Q's, and t. 

To obtain the i 's,  one observes that 

L = as@, B,t) 
i aKi 

Therefore, the general equation for the time deriv 

where 
7 

The 

tives is giv 

a2 s 
and B q K  

+'sKia$j 2 bS 
j 

13 



will be given in a document (previously cited*) which will be published in the near future. 
Remembering that the t e r m s  must be a multiple of F, we may write: 

- 

Q =  

- 
0 

0 

0 
0 

2 2  r k3 sin e cos e 
- F . 

m A ( x )  
0 

0 

p1 may be defined from the Hamiltonian, so that 

where 

as 1 W 2 2  
p1 = -= - pl-% + Q ~  -75- --z - QZ -z sec e tane ( 2  i4) Q4 

2 +Q5$+Q6K3 7-1 sec e 
Q4 

&e = - Lg 

Q , = $ n  - r  ( t -L1)  

Ql, QZ, Q3, and Q5 are obtained from Eqs. (21): 
r 
1 n 

iJ 1 7 

-1 - [81' [i:] = A  

where A, A - l ,  and 

*See footnote on page 3. 
1 4  

a r e  given below. 



+ sin i c o s  (K7 - f )  
r ~ ~ ~ i n i ~ ~ ~  2 i s i n ( K 7 - f )  

2 2  
z [ 1 - s i n  i sin' ( K ~  -f)]'/ 1 -sin i s i n  (K7 - f )  

O l  

- sin i cos(K7 - f )  

1 - s a  2 2  i s i n  (K7 - f )  
0 

cos' i sin ( K ~  - f )  

Jm Jl - sin' i  sin'(^^ - f )  

c o s  i sin icos(K7 - f )  

,/I - sin2 i sin' ( K ~  - f )  

cos (K7- f ) [ l  - s i n 4 i s i n  2 (K7-f)l  - K 4 s i n i c o s 3 i  sin(K7-f) 

sini [ 1 - sin' i sin'(K7 -fp- [ l  - siZ.i sin' (K7 - f)]  "' 
2 - sin' i c o s  (K? - f )  

[1 -sin' isinz(K7 - f ) ]  

- c o s  i sin(K7 - f )  cos(K7 - f )  

K ~ [ I  -sin' i s i2  ( K ~  - f ) l  

- c o s i  

- 

- s in  i cos(K7 - f )  
-~ 2/1 - sin2 i sin2(K7 - f )  

K4sinicos '  i s in(K7 - f )  

[I - sin' i sin' ( K 7 T  

.. - c o s i  
[1 -sin' i sin'(K7 -f)]  

c o s  i 
L 7 f L 6  1 -sin2is in;!(K7-f)  

C O S ( K ~  - f )  sin(K7 - f )  

L3f L6 K4[l -sin' is inZ(K7 - f ) ]  
E' 

15  
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Q4 is obtained by iterating a solution of 

Q4‘ k -1 k - K5 Q4 
t - L1 = - xs + --p- cos .J“” 

k -K4K5 

with t given. 

A ( X  ) is defined as 
. .  

where A1 = Q1 is given by Eq. (29) and 5 and A3 are Qz and Q3 given by Eqs. (30)and (31). 

The new Hamiltonian is given by 

The Delaunay variables may be given by 

‘y5 = r - u 2  2k - 4 
Fz 

(34) “62 = v 2 + “72 sec2 e 

‘y7 = w 

-1 a7 tan e 
‘y3 = 

-sin Jn 
cy sin 8 

2 
(Y6 - kr -1 -1 6 

‘y4 = cos - sin 

r 

k -a5’ -1 
3 /2 

-t + B1 = -1/2 + cos “5 
k 

“5 

E we compare these equations with Eqs. (20) and the first equation of Eqs. (21), we see 
that 

16 



K = C Y  7 4  

K3 = “7 

K - a  
4 -  3/2 

“5 K1 = - “ 1 k  

We let 3/2 
“5 

K z = “ 2 7 ’  

and then our generating function becomes 

3/2 
“ 5  

3/2 
“5 s = -CY1 7 

2 

“5“6 Q: Q: 
+ cos>-- k - “5 Q4 1- Q3- Q1J5 += - - “6 

sin i cos (cu4-f) 

- sin i sin (a4- f )  
+ Q5 sin-’ [sin i sin (a4 - t)]- 

2 2 

1 -1 cos i sin (a4 - f )  

2/1 -sin2 i’sin’ (a4 - f )  

where 

We treat  S as before, so that 

17 



cos i cos (a4 - f )  

2- 

sin (a4 - f )  cos i 
.2~~-- ~ f] 3/2 

- Q5 a6 /x4 - f) sin i P7 =Q2 sin i [1 - sin i sin (a4 - 

sin(or4 - f )  cos(a4 - f )  

(u6 [1 - sin i sin (a4 - f)] - Q3 
.. ~~ ~. 

2 2  + '6 

sin i cos (cy, - f )  2 a sin i cos i sin (a4 - f )  
-~ 6 2 2 T + Q 5  

'4 = Qz [1 - sin i s in  (a4 

1 4 
6 

" U  

2 2a5 2 Qia5(k2 - C Y ~ ( ~ ~ )  
+ - -- 

sin i cos(ct, - f )  

1 - sin i s in  (cy4 - f )  

6 (a1 + cy2) ag'2a6 (ai - kQ,) a, 

P6 = - 2 + Q 1 2  "Q4 -Q2 / T i -  
u Q4 k(k2 - "5"6) 



I 

sin i cos (a4 - f) 2 
“6 (Q‘s-kQ4) 

3 
“gU 

Q4 (k - “ 5 “ ~ )  ’6 = ‘1 2 2 2 -  2 2 P1-Q2 2 2  Q4 (k -“5“6) - sin i sin (u4- f) 

2 
“6 - kQ4 

“1 = - “ 2 +  %[Q1 
“5 

We repeat the operations for  determining the ordinary I 

are still applicable to this problem and are used: 
ifferential equations. Eqs. (22) 

2 2 
FQ4Q3cos e 

“7 = m a  ( X )  

19 



F F iYl - - - uA(X) + - mA(X) ['1'1+ '5% - Q3P3 

Q7 

+ cosBsinBvQ~] - 2 6 ,  

where 

a s in i cos  (a4 - f )  6 v =  

2 2  - sin i s i n  (a4 - f )  

2 
2 2k 6 

Q4 Q t  

a 
lJ = - a  + - - - -  

2 2  - sin i s i n  (a4 - f )  

s ine = - s in i s in  (a4 - f )  

The te rms  p1 and A(X) will be defined later.  Allpther variables a r e  Q's, a ' s ,  and t. 
use the same procedures as before to determine /3 ' s ;  that is: 

We 

so that 

2 

1 .1 

, and - will be given in the report  cited in the footnote on page 3. -- a a2s a2s 
aa. aaj aaiaQj aa.at Again __I 

Equation (26) is used to  define and p1 is given by 

2 3/2 a 5 V 

' { a +Ql($ -%)-% G s e c 2 9 t a n 9 + Q 5  T + p 3 a 7  P 1  = - -  U - 6 , + a 2 ) 7  
Q4 Q4 Q4 Q4 

20 



Q,, =[? - t ] c  

We use the same formulations as before for computing Q4 and A ( x )  where 

sin i cos (a, - f) 2 afi sin i cos i sin (a, - f) 

A =  

2 2  - cos i sin (a4- f) cos (a4- f)  - sin i cos (a4- f) 

f)l f)l [ 2 2  1 - sin i sin (a4- 1 a6[1-sin 2 2  is in  (a4- 

" .  

[ 1 - sin2 i sin2 (a4 - f)] 3/ 2 2  - sin i sin (a4- f) 

cos i cos (a4- f) - cos i sin (a4 - f) 

a sini  1 - sin i sin (a4-f) 6 J 2 2  

- sin i cos (a4 - f) 
n " 

2 2  -s in  is in  (a - f )  4 

2 2 .  cos is in  (a - f )  cos 1 sini  cos (a4 - f) 

- sin i sin (a4 - f) 

4 . .  
~- 

2 2  ,& - a;J1 - sin 2 2  i sin (a4 - f)  

cos (a4-f) [ I - s in  4 2  is in  (a4-')] -a6sinicos 3 is in  (a4-f) 

0 

-1 

- cosi  

- sin i cos (a - f) 4 

4- sin2 i sin2 (a4 - f) 

2 .  . a6 sin i cos 1 sin (a4 - f) 

[I- sin2 i sin2 (a4 - f)13'2 
- cos i  

2 1  

I 



- 
cos i 

p4 + p3 2 [1 - sin i sin 2 (cy4 - f)] 

s in (a4 - f )  cos  (a4 - f )  

p7 + p3 [I - sin 2 i sin (a4 - f)] 

For the PoincarE variables, we wish to  eliminate the singularities of K i  = Kg 
(zero inclination) and k2 = K5K4 (zero eccentricity). If we view Eqs. (13) through (17) and 
Eq. (19), we see that this cannot be done with the functions used. A look at Eqs. (15) and (16) 
suggests adding or subtracting K6 and K7 to t ry  to  eliminate the K4 = K3 singularity. 

When this is done, one has 

2 

2 2 .  

2 

(43) 
-1 K4 - kr -1 v sin 8 K6 - K7 = - C O S  + sin ryk- K4 + K3 

where K4 > 0 and K3 > 0 by convention. 
3/ 2 

We next note that if we choose K1 = - cy - “’ , w e  remove the factor 3/2 - f rom the k 
1 k  

k - K5Q4 “5 
t e rm and have possibilities of combining it with the K4 - K3 te rm.  Also, -1  

note that the P, t e rm that resul ts  is a position-velocity t e r m  (no Lagrange multiplier -- part 
of the unadjoined two-body problem). Assume again an addition or subtraction of the p, t e rm 

with the K4  - K3 te rm.  This resul ts  in the elimination of the k2 = K5K4 singularity. When 

this is done, one has  

2 

2 -1 vsin 0 r u  - -  
I*(44) 

a s  - + + sin ___ - 
a “1 K4 + Kg k + Kk’2K4 
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We have now established one new variable. If we solve Eq. (15) for tan (- tan e), 
we may write: -5 

v sin + - w tan e cos + sin K6 = 

v cos cb + w tan 8 sin + COS Kg = 

When multiplying both sides by/-, we obtain: 

v sin 9 - w tan e cos + = Jv sin K~ = “3 m 

If we operate on Eq. (16) in a like manner, we obtain: 

(K4 cos 9 + K3 sec €9 [sin + (4 - kr) - cos 9 K4ru] + v sin e (cos + (K4 2 - kr) + sin + K4ur) 
- - (46) 

a7 =Jk - K4Kk/2 cos (K6 - K7) 

[(K4 cos 9 + K3 sec e) (cos + (Ki  - kr) + sin + K , p )  - v sin e (sin + (K4 - kr) cos + K up) - 4 1  - ~ - 

r(K4 + K 3 ) / W  

Let a5 = K5, and we have given ct5, a3,  ff4,  ct6, and a7 f rom K5, K4, K3, K6, K7 or rather 
(u, v, w, r e, +) where the a‘s have no zero in the denominator at zero inclination or 
eccentricity, 

23 



ll11111111111l I I1 IIIII I Ill 

Our transformations become: 

"5 

"3 

@4 

K4 

"6 

- v sin + - w tan e cos + - 

+ w  

- v cos 9 + w tan e sin 9 

2 + w sec2 e +w 

- 

= d v  2 2  t. w sec2 e 

2 (K4 cos e + w sec e) (sin + (K4 - kr) - cos 4 K4ur) 

v sin e [(cos 9 (Kf - kr) + sin 9 K4ur)] 

r(K4 + w ) , / x  

2 (K4 cos 8 + w sec e) (cos Q, (K4 - kr) + sin 9 K4ru) 
CY7 = 

(K4 + w) 

2 1 v sin Orsin 4 (K4 - kr) - cos 9 K4 ur j  

r (K4 + w) 7 k + K4 a5 

Next we write the %'s as functions of cyi  (i = 3 ,  4 ,  5 ,  6, 7) 

24 



2 2  
6 - “ 7 -  2 2 k - a  
1/ 2 “3 - “4 K3 = 

“5 
2 2  

“7 k -  “6 - 
K4 = 

1 / 2  
‘‘5 

K5 = a5 

l “ 3  K6 = tan- - 
“4 

“ “  
. 3 _. 7 - “4”6 

“4 “7 + “3 “6 
- tan-l K7 - 

We next note bat ,  if S (E, $, t) is a solution of the Hamilton- Jacobi equation, then so is 
S (K, $, t) + S* (K) . Let 

3/ 2 

3/ 2 

“5 

“5 

K1 = 4 1  k 

K2 = “2 k 

* 
(old) + 

i n s  and note S = S 

as - “5 k - a5  Q4 as* - p1 = --t - -T 
3/2  uQ4ct?d2 

+ “cy1 
7 + cos-l y&i + a;) (2k - a6 2 2  - 13) 

7 as* = K6 - K7 = tan- - - 1 “3 “ 7 -  “4“6 
“4 “7 + “3 “6 “4 

1 “6 = tan- - 
“7 ’ 

so  that 

-1 “6 s* = (cy1 + ff2) tan - 
“7 

25 



+ s*. - 
(new) - ‘(old) The resul t ing new S is now writ ten as S 

K4 sin i cos (K7 - f )  
+ Q~ sin-’ s in  1 s in  ( K ~  - f )  1 - Q2 / 0 0 

4 1  - sinL i sinh ( K ~  - f )  

. cos i s in  (K, - f )  
. ‘ I  ’ + Q~ sin 

2 2 -d - sin i s in  (K7 - f )  

where 2 2 
- a3 2 - “;) 

“5 
“5 s in  i = 

2 2  
K4 = 6 7  k - Q  - C Y  

5 
1/ 2 cy 
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CY “ -“ “ 3 7  4 6  

4 7  3 6  tanK7 = CY “ + a  cy 

2 
U 

P l  

p2 

= ++sin-’ 

-1 + cos 

3/ 2 

k 
- “5 _ -  

Q3 

1 / 2  
Q4‘ “5 

3/ 2 
“5 - t  - - 

2 2  k k k - Q 6 -  “7 2 2 
1 / 2  

- “3 - “4 
“5 

2 

1- 

4 “4 

2 2  
3 4  “ +“ 

“5 “7 2 2 - “ 3 - “ 4  
1 / 2  

“5 
27 
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az 

Q3 +v 
5 CY 

az 
a i  

2 2  
Qi 1 az + 

uQ: a5 -1/2% “5 
1/2 
5 “ 

“7 

Q7 p3 “3 + p4 “4 
1 I2 

3“5 
p5 = T (.2 (T -cult)- Q1 + + 4“5 

2 2  2 2  sin j cos (K7 - f )  (k - ct6 - a7) 

1 I 2  1 - sin2 i sin2 ( K ~  - f )  
Q4 Q3 [k-“;-“7 

+ p 1  F + z r y g  

28 



I 

Q4 (al + (Y2) Q3 (k - a6 2 2  - a7) a5 2 2  Q4 - (k - ‘6 2 - “7) 2 2  
ku + 3/2 f 2u a5 2 Q4 7 -  Q1 

- 
2 2  k - U  2 2  - a  

4 az az 6 7  k - a6 - a7 2 2  

2 
a3 f (Y 

1/2 -“3  -(Y4 
6 - a 7  2 2 

“5 

where 

- Q5 sin (+ - K6) + Q6 tan i cos (+ - K6) sin (+ - K6) (52) 

2 2  

1 2 2  tan i sin ( 4  - K6) i + sin i sin (+ - K6) 
az (k - “6 - “7) 
a(K7 - f )  = -&2 112 

“5 
cos 2 i + sin 2 2  i sin (+ - K6) 

+ Q5 sin i cos (+ - K6) + Q6 cos i 

- -  a’ - -QZ sin i cos(+ - K ~ ) .  
aK4 

One notes that, when a3 = CY = 0 and a, = CY = 0, there are singularities in the above equa- 
tions. 4 6 7  

If one defines the following: 

2 2  k(k - a6  2 -a7 )  2 - ( Y  2 2  Q p 1  ku Qlk[(k - a t  -aY7) -a5kQ4] + -- a z  5 4  

a(K7 - f )  a: Q: A3 =(y3/z+ 5/2- 3 
5 “5 Q4 

29 
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( k - Q 6 - “ )  2 2 3  U (k-Cr6-a7) 2 2  [ ( k - a ~ - a i ~ - k a 5 Q 4 ]  7 
2 2 2  

ff5 Q4(2k- ff6 - “7) 
2 2 + p 1  

- _ -  
Q1 a: Q: (2k- cy6 - f f 7 )  

and uses  these along with the equations for p,, p2, and p5, then the system is non-singular 
at CY6 = CY7 = 0 and ff z ff = 0. 

3 4  
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s i n +  -cos+ 
[cos + sin t ]  [:cos@sine] /- 1/ 2 

“5 

L L  

- “; - “:) “4 “31 1 

31 
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+Ql% 2 v  iq +Q~Q~T-  2 &2Q3 w tan 0 - u Q4 (4 + Q: cos2 e) 

3 + cos0sinevQ 21 
cos i &2 FQ4 2 COS (K7 - f )  

r =  t Q3 sin i cos (K7 - f )  

cos i sin (K7 - f )  sin (+-K6) 
(55) 1 = ___- 

p 7 - f ] t  = - s i n i c o s ( K  7 - f )  t sin i cos-? It 

The following equations may be used to evaluate the Q’s needed in the problem and give 
information for A ( X ) .  

Adding A2 and A3 of Eqs. (53), one obtains: 

From equations for A1 and % of Eqs. (53), one obtains: 

[cos 2 i + s i n  2 i s m  . 2  ( + - K ~ ) \  (ai+{) 

Q2 
= (ai+$) s i n i c o s ( + - K  ) Q  -__-  - =’ ~ - - -  6 3  cos i 

az and -from Aq and p5 by Eqs. (53) for A1 and % and a(K7 - f )  ai Next we eliminate 

obtain: 
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82 = A4 - 2 2  - (Y 7) u Q ~  k (2k - (Y 

sin i cos ($ - K6) 2 2  
cos i 

Q1 + 1/ 2 Q2 + Q 3 1 J Z ~  
k - Q 6 -  “7 

= (“6 + “7) 1 UQ; a5 “5 “5 

1/ 2 
5 ff 

2 2  (k - cr6 - a7) sin i cos ($ - K6) 

1/ 2 + Q3 
“ 5  

+ Q 2  

where 

* 
A -CY + a 2 - A 3 .  3 -  1 

Next we write: 
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. ... 

or 

2 2 2 2  2 2 2  and A ( x )  = Q1 +Q4% +Q4c0s 0Q3 . 

B =  

B-1 z 

-[cos2i +sin2isin2(+-K6)] (ff3+a4) 2 2  
. -~ - . - - ~  ~ (at+ 4) s in i cos  ( + - K ~ )  cos i 0 

0 

-cos  i 
T-2 
3 4  ff + a  

- uK4 
2 2 1/2 b 6 + “7) “5 

2 2  a + f f  

Ycosi 
2 2  k-ff  -CY 

5 

6 7 “ 2 - 2  
7 - 3  4 

U - 
“5 

K s in icos(+-K6)  4 Q: “5 

sin i cos  (+ - K6) [cos2i+s in2is in2(+-K6)]  (0 Q 2 - G )  K4[cos2i+sin 2 .  1 s m  . 2 (+-K6)] 
- 

2 
5-4- .- ~ ___- 

cos  i Q4Q5 112 2 2 2 cos i a5 Q4(a6+ 2 2  a + a 4  3 
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The equations for pl, and Q are given he re  for reference:  
5 

k-cy 2 2  - C Y  ( k -  cy6 2 2  - cy7) p3 c o s  + - p, s in  +) 
s in  i s in  ( +  - K ~ )  + 

2 2  
3 4  

Q5 = Q3 1 / 2  

- c y  - a  

5 cy 
5 cy 

5 cy 

We may now proceed to  determine A (x) and H as in the two fo rmer  c a s e s  shown. Here 
we solve for + instead of Q4 (r) as before.  
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111. MODIFIED DELAUNAY AND POINCAR6 VARIABLES 

This section presents a method of introducing the three known constants of motion for 
the full problem as coordinates of the base problem. We will start  with the Hamiltonian of 
section 11: -+)- X z 2  W 2 2  sec e t a n e +  p u 2 

W 
2 

1 r r 

V w 2  F + p2 + p3 sec 8 - X 7 " +  a ( x )  
r r 

where 

The first step is to  transform the Hamiltonian and consider only the base problem. The 
transformation is: 

(5 7) S = P A + P 7 m + P  X + P3w+ P 4 r + P 5 0  + P 4. 
1 1  2 2  6 

The resul ts  of this transformation give the following relationships: 

\ = Q1 - U  = PI = aS/aQ1 

Xz = Q2 - V  = P2 = aS/aQ2 

r = Q 4  p1 = P4 = aS/aQ4 

m = Q7 +, = p7 = as/aQ7 

A3 = P - aS/aQ3 

9 = Q  5 p2 = P5 = aS/aQ5 

w = Q3 3 -  

Q, = Q s  p3 = P6 = as/aQ6 
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The Hamilton-Jacobi equation becomes: 

U 
o = - -  as 

a t  
as 

aQ7 
- 

as 
aQ4 

- -  as 
aQ1 
- 

as - 
- 

n 

(5 9) 

We note that Q6, t, and Q7 do not appear, so that by separation of variables we have 

= K 3  . as 
5 -  =%, - as 

at = 5 9  aQ7 

We have proceeded to this point as in section II. Here, we will introduce the known con- 
stants. These constants come from the following relationships in Cartesian coordinates: 

- - - x x ii + x x 'X = 0 

This integrates to form: 
- - x x Z + F x  i = M  

where 
nates are: 

is a constant vector of three components. The resulting equations in our coordi- 

M1 = sin f#J A + cos f#J B 

M2 = cos f#J A - sin $I B (62) 

M =  3 p3 
where 

A = ~3 v - w sec2 e + p 3  tan e 

B = p2 - % w t a n  e . 
It can be shown by Poisson brackets that using M1, Ma, and M as new momenta is im- 3 possible. However, we may use the following: 

2 2 2 2 2  K 7 = M l + M 2 = A  + B  

M = p  3 3  

One notes that K7 = % ( x2, v, h3, w, pa, 9, p3). We, therefore, proceed with the fol- 

lowing differential equations of the characteristic strip: 
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2 2  a's - Q3 sec Q5 tan Q5 
- -  

Q: 

a's as - - _ - .  
aQ4 aQ1 

We integrate in a manner similar to that used in section II to obtain: 

We may now rewrite the Hamilton-Jacobi equation with the above constants in the form: 

2 2  2 as as 
= QzQ, sec Q5 tan Q5 - K Q sec Q + - - 

3 3  5 aQ5 8% 

From this separation of variables, we may write: 

2 2 as as 
5 aQ5 8% 

K ~ K ~  = %Q3 sec2 Q5 tan Q5 - K3Q3 sec Q + - - 
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From Eq. (63) we have: 

n 

as as 2 4 = (-q - &2Q3 sec Q5 + K3 tan Q 

2 
+ (& - & Q3 tanQ5) 

If one expands this expression and solves for - , one obtains: 
aQ3 

as 2 as as 
Q3 sec Q5 + K - tan Q5 + q Q3 tan Q5 

as - 

aQ3 (< - Q i )  
- _  

(73) 

(74) 

Formally we may write: 

as 2 as as 
Q3 -%Q3 %set Q5 + K -tan Q5 + - Q3 tan Q5 

dQ3 
( Q )  -% aQ5 

s 3 -  (4 - Q:) 

One notes that the last expression on the right does not affect the Hamilton-Jacobi 

One notes that 4 + 

equation (59), so that we may augment our transfer function S by this quantity. 

appears in the S function and does not affect the Hamiltonian. 
We let 

* 
K3 = % ,  M7 = K 7  

and 

and drop the asterisk(*). Our S function then becomes: 
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-1 Q3tanQ5 
- Q 1 u - Q 2 v + K 3  

+ K6cos -1 K3K4+K6Q3 

Our K's are now defined as 

K1 = -Ho 

K2 = ~ 1 7  

K3 = P3 

2 2  = v2 + Q3 sec Q5 

40 



We may now record the time derivatives of the K's: 

i(z = ;;;z Fr A ( X )  

K3 = 0 

2 F ( v q  + Q3 X3) 1" 
K4 = m A ( x ) K 4  

K7 = 0 

F m- [ - x l ( $ ( v Q 2 + Q 3 x 3 ) +  p - 5 ( - u r $ - 2 Q 3 X 3 t a n Q 5 +  p 2 )  

+ x3 ( -A3cosQ5 (v sin Q5 - ur  cos Q,) - p3) 

We next record the L's: 

uQ4 k -1 k-K5Q4 

/k2 - K i  K5 
L1 = t  +-- --p- cos 

Q7 L2 = y-- + t  - L1 

-1 K4 Kg + K3 Q3 + cos 
-1 Q3tanQ5 

L3 = Q6 - sin 

1 +(<K5+K5kQ4 - 2k2) 

uQ4 (kz -K:K5) 

(79) 

41 



2 K s in  Q, -1 K 3 K 4 +K6Q3 
+ cos -1 4 K4 - kQ4 

- sin -1 L6 = cos 

Q4 &- J K X  

K2 Q + K4K3K6 

K4 / K X  Y K X  

-1 7 3 L7 = sin 

42 



Note that these relationships were used: 

-1 = sin cos -l K3 K4 + Kg Q3 

-1 = sin cos -1 K4 Kg + K3 &3 

For this problem 

Again, we may write 

where the 

a% 

K 4 / n  cos L7 

is obtained by FORMAC and K and Q are given before. 

Next we will develop the inversions needed to define A ( X ) :  
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1 2 2 +- + Kg [-  K4Q4[k2 -K:K5) ' K4 (K4 2 - Q:) 

2 2 
uv (K4 + kQ4) Q3 tan Q, 

Q2 = - -- K3 Q3 tan Q, 2vL5 

'4 L4 + (K4 - 9,) Qt 

1 2 
3 (t - L1) (K4 + kQ4) u 

(k2 - K i  K,) 

/K2 4 7  (K2 - K," - K i )  - 2 K3 K4 K6 Q3 - K," Q: + v (K1 - K2) 

- 2  2 Q4 Kg 
- Q3V 

Ki (K4 - Q3) 

2 2  2 J K; (Ki  - Q,") - 2  K3 K4 K6 Q3 - K4 (K6 + K3) Q, sec Q, - tan Q5 K4 (K4 K3 + K6Q3) 
V 2 

(Ki  - 9,) 2 
v (KZ - Q,) 

X 3  = Q2 

From our equations for L's, we have: 

where 

Let 
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Then: 

Q2 = vG2 + sin (f - L6) 

2 2  
(K7 - Ks) Qi + cos2 Q5 X3 2 = G2 2 2  K4 + sin2 (f - L ~ )  

where 

2 K UQ cos L6 - (K4 - kQ4) s in  L6 

Q41/k2 - KS K5 

4 4  - sin (f - L6) = 

One notes on the inspections of G2, Q1 and sin (f - L6) that these are not functions of 
(x)] and Ho do not contain these variables. This implies L7, b3, o r  KS. So that F/m 

that K = 0, K3 = 0, and L 7 3 

Formally we may’write 

= 0 as desired. 

sin (f - Ls) 1 2 
A ( x ) ~  = Q; + Q: [ G 2  2 2  K4 + K; - Kg 2 

We now proceed to  write the modified Delaunay variables. 

Let: 

K = a 6  4 

K = f f  K6 = ff4 
5 5  

K7 = ci, 
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Then we will have p l y  p,, and p5 as before with p, and p4 similar to a3 and a4 before. 

The Delaunay-like variables will be p,, a5, a6, p,, and p,. The relationship for w is 

given through p7. The new generating function becomes: 

(.w3/2 (Y Q uQ4 “5 -1 k - Q ~ Q ~  1 /2 
+ cos 7 + (or + a . )  -- Qlt + - - 

k 0- 1 2 1  k / k T  

5 
3 /2 

“5 s =  - -  
k 

a (Y + a  Q -1 4 6  3 3  - +  cos 
-1 Q3tanQ5 - Q1u - %v + a3 k6 - sin 

2 
“6 - kQ4 -1 - sin 

a sinQ5 
- 6 

2 
~ Q + Q C Y ( Y  -1 7 3  6 3 4  + a  sin 7 

Our CY’S a r e  now defined as 

- k 

5 

k 

5 

“1 - .3/2 Ho 

“2 = 3/2 9 
(Y 

= - 1 (5 Q3 2 2  sec Q5 tan Q5 - a3Q3 sec 2 Q5 - P ~ V )  

“4 CY6 

2 
2k “6 2 

U 

2 2 2 2  
a6 = v + Q3 sec Q5 

-1 @3“6+ “4‘3 + cos 

2 2 2 2  
“7 = (%v-Q2Q3sec  Q5+a3tanQ5)  + ( p 2 -  $Q3tanQ5) + a 3  
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where the equations for  ci5 and ci define u and v of the generating function. 

Next we record the P’s :  

6 

3/2 -1 k - a5Q4 
@5 t -  -~ + cos  

2 l /k2  - ci5ci6 
h =  -- k k 

3 /2 3/2 
“5 Q,j+ 7 “5 t + p ,  p2 = XF- 

(Y cr + a  Q Q3 tan Q5 -1 4 6 3 -_3  + cos -1 p3 = Q6 - sin 
- Q i  / a x  

ct 4 6  ci (a2 6 -kQ4) 
2 

Q1 + - - ----- 

2u 2 uQ4 (k2 - “5ci6) 
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2 
-1 ‘‘7Q3+ “6“3“4 p ,  = sin 

where 

We proceed as before to determine the X‘s needed for  A(X): 



1 + a4Q3) - V f i  
2 

“6 

cos Q5 X3 = Q3 sec Q5 G2 - 

2 
7 3  3 4 6  a Q + c r c r c r  

s i n p 7  = 

“6 

2 

= f  -1 “ 6 - k %  cos  ~ 

Q4 y k q  
(“3“6+ a4Q3)a6sinQ5 - v c o s Q 5 a  

sin (f - p ) = 4 

so that 

cos  Q5 X3 = Q3 sec Q5 G2 -+/a: -ai sin (f -p4) 
“6 

sin (f -B4) % = v G 2 +  Q3 sec Q5 

“Ls 
and 

2 2  

“6 

2 2 2 2 “7-“4 2 4 + cos Q5 A3 = “6 G2 + sin (f -p4) 
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2 2  2 Again we note that Q1 and % + cos Q5 A3 do not contain “3, P7, and P3. Therefore, 

We formally write: 
= 0, d Q  = 0, and zU7 = 0, as desired. 3 ’  

- 
The same Q’s are used in this problem and the Q is the same as previously cited. 

Below are listed the ;E’s: 

F Q: 2 
“4 = iiiwqq [ 2Q3A3%tanQ5 - %a3 - p2%-vA3 sinQ5cosQ5 

We have now presented the information to proceed as before. 

We develop the Poincare‘ variables in two steps. First, we consider the transformations 
of section II and note that we need the following transformations: 
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KZ3/ 

K 1 z - r  KT 
Kg3/ 

% =  k q 
Kg = -Kf + Kg - IC$ 

K. =K? i = 3, 4, 5, 7 . 1 1  

The K’s with the aster isks  are the new constants. Our S function then becomes: 

(95) 

-1 KZ sin Q5 
-cos  

-1 Q3tanQ5 - Q1u - Q2v + K* Q6 -s in  

3 I 
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Our K*'s are now defined: 

K$ = P 3  

KZ 2 2  = v + sec 2 Q~ 

K* = - - r ( K 1  k - K ) + - 1 (X2Q3 2 2  s e c  Q5 tan Q5 - p 3  Q3 s e c  2 Q5 - p 2  v) 

K $ ~ =  (X3v-%Q3sec  2 Q5+p3tanQ5)  2 + (P ,  -X3Q3tanQ5) 2 + K $  2 - 
K4 

6 
Kg 

We next r eco rd  the L's: 

K$ sin Q5 -1 L T = - T t  - + s in  
Kj3 /2  u Q 4 K j  1/ 2 

KZ K$+ (KT; -KT -q) Q3 
_- - -1 

k + K $ K j / '  
u2 Q4 

' ) - 'Os Y a Y K - T  
+ c o s - l  (1 - 
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-1 K*72Q3 + KZ KS (Kg - K j  - q) 
L*?=sin  ~ 

KZ - (KE - K j  - K3)2] [.;“ - K* 321 

Kg KZ (KZ2 - k Q4) Q1 
2u Q4 (kz - Kf Kg) + - 2 i i  - , - - I  - KZ2- 2k Q4 - K$ K%’/ Q4 

2 K*51”~Q4 (k+K$K*j’ ’) 

53 



2 One notes that the factor k2 -Ka Kg still remains in L$ Lg, and L& To remove these 
affect Eqs. (46) of we need two transformations. One we renameL6 and K6. 

section II. This will not be done directly because of the needed constants. These t rans-  
formations,which constitute the second step, a r e  

he other wi 

S = LT; LA + identity 

6 = KT; = L i  _L_- 

- -Kti = Li5 as 
a Lb 

- K '  /3 - K i  pi 5 5  i = 1, 2,  3, 7 

1/ 2 
k - K i K j  c o s K h  J 
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% =  - “ 5 =  - Kg ’ 

The other transformations result  in identities. Our transformations a re :  

K? = a  i i  
* 

L. = p  i i  

K i  = a 5  

i = 1, 2,  3,  7 

2 2  
K i  = 4,  6 k - Q  - Q  

“5v 
“4 = - k -K4K5 * * ll2 cos LE 

1 “6 LT; = tan- - 
“4 
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Next we will rewrite our equations in the new terms:  

k 
“1 = 3/2 Ho 

“5 

“5 

k 
“2 = 3Jz x7 rJ 

“3 = P3 
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+ sin-l i 
where 

r 1 

where K8 and two forms of L$ are given in Eqs. (97) and (98). 

Q7 &lU P1Q4 -W) -!q+ "5 3ff 5 
P5 = 2k (a2 (J. 

57 



.......,. .... ..-, ,, ,., 

One obtains the following time derivatives: 

65 

“2 

“3 

7 a 

4 

0 

0 

F Q: ~ A ~ [ ~ ; c o s ~ Q ~ +  p3(2$Q3tanQ5- P ~ - V ~ ~ S “ Q ~ C O S Q ~ ) ]  - p2 p3$ 

2 2  2 2 2 2 
cos@? m A ( ~ ) . , / w  \ ,/ a7 (v + Q3 sec Q,) - tmQ5 - p3 Q3) sec Q5 - p2v] 
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FD 

i 

2 2 2  v +Q3sec Q5-kQ4 

-sin R 2 2  

1 COSR s i n s  

s i n R  - c o s R  

1 X 2  cos  Q5 
(V x 2  + Q3 X 3 )  s in  Q5 

J ,/v2 + Q3 2 2  s e c  Q5 

c o s R  s in  R 

mA ( X I  sin E - c o s  R 
- ~ .  F Q4 - -  ( X 2  v + X Q 3 ) +  d2+ Q3 2 2  sec  Q5 .;I[ ] 

+ { - -  R -  mA (X).,/v2 + Qi s e c 2  
v 2 2 2  + Q3 s e c  Q, - kQ, . F [u Q4 2 (vX2 + Q, A,) + X I  (V 

.- ~- 

4 Q5 

v cos Q5 

.J12 + Q i  sec2  Q5 s in  Q 5 

iu5,/v2 + Q~ 2 2  sec  Q~ 
+ 

2 2  4 ( k + a'ii2,,/vT+< sec  Q5 ) 

2 2  Define 
"5 'i22/Y2 + Q~ tan Q5 

s in  i = 

4 k - a: - a  
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FQ4( 2 - cos i 3 +&in2i - sin 2 Q5 COS Q,) tanQ5 cos i 3~;’~t  
- ‘5 2k + 

(x 1 sin id-- 

r 1 

1 -$(-uQ4A2-2Q3 A3tanQ5+ p2) + A3 (-A3cosQ5 (vsinQ5 -uQ4cosQ5) - P,) 

* 
The time derivatives of LA and p may be obtained in a similar manner. They will not be 

presented here because of then- lengd. 
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The following equations give information to define A ( X ) :  

where 

is well defined except at “6 =a4 = 0. 

There : 
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where 

Q7 ( Q ~ + ( Y ~ )  u [(k - a i  -Q:)~ + a5kQ4 1 
(“2 7 -“It) + a:’ ’(k - a i  - a t )  Q4k (2 k -a6 - 2 7  -a4) - -  

a5 

Q3 

f l  Q3 
2 2 2  

(“1 + Cy2) U [(k -a6 - “4) + Q‘5k Q4] 
___-  - - + 

Q4k(k - ct6 2 2  - a4)  (2k - a6 2 2  - a4) (k - a6 2 - 2 
[(k - a6 - - a5Q;] 
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tan Q5 [ a3 (k - a6 2 - a:) + a:/2Q3 (Kg - a1 - u2)] va5 
- 

2 2  2 (k - a6 - u4) [(k - a6 - - a5 Q3 

If we proceed as before we write: 
r 

(108) 
+ a2) (k - a6 2 2  - a4) - ka5 

-- 2- -2 - - 2 2  - - 
__ 

Q k(2 k - a6 - a4) (k - a6 - a4) 
+ -_ -_ 

5 4  

It can be seen, f rom the equations for p,, p,, and Q4 that A(X) does not contain p,, p,, o r  a3. 

Again we write: 

and we obtain 

2, = 0 

ir7 = 0 

B 3 = 0 .  
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APPENDIX 

The following tables of equations were found useful in developing the equations presented 
in the text and in developing computer programs for numerically evaluating the ordinary dif- 
fer ent ial equations. 

Only equations for the initial constants (K, L) of section II(K-D-P-variables) and some 
tables for the Poincarg variables are presented. Tables for  the other variables may be de- 
duced from these tables or derived in a manner indicated by the tables. 

In short, these tables are presented only to  aid the interested reader  in understanding 
the resul ts  and extending them for his special purposes. 
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TABLE FOR K-D-P VARIABLES 

sin i sin (K -f) 
7 1  

K4 sin i cos (K7 - f) 

-sin i sin (K7-f) 

cos i s in  (K7-f) 

2 2  

-1 + Qs sin 

&-K; 
s in  i = 

K4 

a i  - 1 a i  - cos i a 2i 1 
3 

-- 
aK3 K s i n i  ’ aK4 K s in i ’  m=K:sin 4 

2 a i- cos i 1= a2.  - cos i (2-cos i) 
2 3 .  aKt  K4 sin 1 

Ki-kQ4 

Q&q cos f =  

2 2 2 a f  - 2k -K K -K5kQ4 -K4 (K4-kQ4) 5 4  

aK4 uQ4 (k 2 -K5K:) 
a f  = 

a Kg 
7 -  

- _  - 
2uQ4 (k2 - K5K:) 

2 -2K4K5k(k-K5Q4) K4(2k 2 -K K 2 -K5kQ4) 
af - K4 a f -  5 4  

aQ4 uQ4 ’ 3 - uQ4(k2-K5K:)2 - 2 Q 3  (k2 - K5Kt) 
4 

3 2  2 
-K4(K4-kQ4) K4(K4 - W4) a f -  

$- 2u Q4(k2-KtK5)2 - 4u3 Q4(k2-K5K:) 
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K4 cos i cos (K7 - f )  cos i sin (K7 - f )  
_ _ _  _ _  - _ -  az - 

-- 3 / 2  + Q5 /”-- 
1 - sin i sin (K7 - f) 

a i  

sin i sin (K7 - f )  COS (K7 - f )  

2 2 2 
K4 sin i cos (K7 - f )  [cos (K7 - f )  - 2 cos i sin ( K ~  - f ) ]  

2 5/ 2 
a2z 

2 
- -  a i  2 - Q2 [1 - sin i sin ( K ~  - f)] 

2 2 2 
K4 cos i sin (K7 - f )  [cos i - 2 sin i cos (K7 - f ) ]  

f)l 5 / 2  
2 2 

a2 z 
‘ F f )  = + Q2 [I - sin i sin ( K ~  - 

sin i [cos 2 ( K ~  - f )  - sin 2 (K - f )  cos 1 

. . -7 ~- 
cos i cos (K7 - f)  

l 2  2 .  . 2  1 - s in  I s in  (K7 - f)  
2 - ‘6 + ‘5 [ I -  sin2 i sin2 (K7 - 01 31 

cos i cos (K7 - f) a2 z 
2 2 aiaK4 = - Q2 [I- sin i sin (K7 - 

2 K4 sin i cos i sin (K7 - f )  

a ( K 7 = + Q 2  p -  sin i sin ( K ~  - f)] 3/ 

sin i COS (K7 - f )  

+ Q5 
az 

2 2 

cos i 
2 2 

+ ‘6 [I - sin i sin ( K ~  - f)] 
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a2  z 
a(K7 - f) 

K~ sin i cos 2 i cos ( K ~  - f) [I + 2 sin 2 i sin ( K ~  - f’] 
[I -sin 2 2  i sin (K - fi] 5/2 2 = Q 2  

2 2 s in  i cos i sin (K7 - f)cos (K7 -f) 2 sin i COS i sin (K7 - f )  

-Q5 [I - sin 2 2  i sin ( K ~  - T t Q 6  f)] [1 -sin 2 2  i s i n  ( K 7 - f j 2  

2 sin i cos i sin(K7 - f) a2  z 
[l - sin2i sin2 (K7 - f)] 3/2 a(K7 - f) aK4 = Q2 

sin i cos (K7 - f )  
- -  

2 2  4 - sin i sin (K7 - f )  

We note: 

a(K7 - f )  
_. az - az a i  az aK4 + az 
aqj  a i  aq  + m4 w 7  - f )  aqj j 

a2z - a2z a i  a i  + a22 . ( a i  aK4+  a i  a K 4 )  +---- az a 2 i ~ _ - _ _ -  
aqjaqk ai2 aqj ask alaK4 Qj aqk aq j  a i  aqj ask 

where q. and qk are Q4, %, K4, K5 and K7. 
J 
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k - K5Q4 

J k T ;  

z (3) =cos-l 
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TABLE OF POINCAR6 VARIABLES 

sin i 

a i  - 
a“3 

a i  - 
a“4 

a i  - 
a“6 

a i  - 
a“7 

a i  
a“5 

5 
a“3 

2 2  k - a6 - a7 2 2  2 2  
“5 (“3 + “4) (2 1/ 2 - “3 - “4) 

- “5 - 
2 2  k - u6 - Q~ 

- - 2“3 
2 2  k - a2 - a7 2 2  2 2  

(a3 + “4) (2 1/ 2 - “3 - “4) 
“5 

- - 2“4 
2 2  k - a6 - a7 2 2  - “3 - “4) 

“5 

2 2  
2“6 (“3 + “4) 

2 2  
2 2  - “3 - “4) 

“5 

2 2  - “3 - “4) 

2 2  
(“3 + “4) 

2ff5 /A 
v 

“4 

CY + f f 4  
2 2  
3 

2 2  k - f f6  - ff7 2 2  - “3 - “4) 2 
3 +“3  (2 1 / 2  

“5 

aK7 -ff7 
aK7 -“3 ’ -- 

- 2  2 a“6 cy6 + a7 

- -  
a“4 - CY3 + CY4 
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2 2  2 
+2a6 [ k (k - (Y5Q4) + (a6 + ‘Y7) (2k - “6 - “$1 a f  - _- - - 

a:/ uQ4(cy6 2 2  + Q ~ )  (2k - a6 2 2  - C Y ~ )  
- -  
aa6 

2 + (k - u6 - af - 
3/2 

- -  

a“5 “5 uQ4 

-2u6 2cW6 (k - “6 - 
- -pr- - 5/2 3 3 

“5 Q4 
a Q~ aa5 

5 uQ4 

2 2 2  

- 3/2 5/2 3 3- 

2“ (k - “6- ‘Y7) 7 - 
“5 uQ4 “ 5  U Q 4  
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, 

- sin (4 - K6) 
sin (K7 - f) = 

2 2 2  s i + sin i sin ( +  - K6) 

cos i cos (+ - K6) 

2 2. 2 cos i + sin 1 sin (+ - K6) 

C O S  (K7 - f )  = 

2 

cos i + sin i sin (+ - K6) 

2 2  cos i 
2 2  1 - sin i sin (K7 - f )  = 

2 2  2 2  2 
(k - (Y - a 7) cos (4 - K6) [cos i + sin i sin (+ - K6)] 

cos i 
- -  a‘ - -Q2 a i  

-Q5sin (+ - K6) + Q6 tan i cos (4 - K6) sin (+ - K6) 

2 2  2 2 
az (k - a6 - a 7) sin i sin (+ - K6) [cos i + sin2i sin (+ - K6)] 

cos i 
= -Q2 a(K7 - f) 

cos 2 i + sin 2 2  i sin (+ - K6) 

cos i +Q5 sin i cos (+ - K6) + Q6 

- -  a‘ - - Q ~  sin i cos (+ - K ~ )  
aK4 
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2 .  . 2  

[Q, K4 COS (+ - K6) cos2 i + 3 sin2 i sin’ (+ - K6)] r [cos2 i + s in  1 s in  (Q - K6)] a2z = 

a(K7 - f)’ cos2 i 

+ Q cos i s in  (Q - K6) - 2 Q6 s i n  i cos (Q - K6) sin i (+ - K6) s in  i 
5 3 

s in  i s in  (+ - K ~ )  (cos2 i + sin 2 .  i sin . 2  (+ - K ~ )  
a2 z 

a(K7 - f)a K~ = - Q2 cos i 

2 .  . 2  cos2 i + sin 1 sin (+ - K ~ )  

+ Q cos i cos (4 - K6) - Q6 sin i [l - 2 s i n  2 (4 - K6) ] )  

2 .  2 a2z - 
a(K - f)a i - { Q ~  K4 sin (+ - K ~ )  [3  sin 1 cos (+ - K6) - 11 

cos2 i 7 

5 

2 2  2 2 2 .  2 .  . 2  (k - a6 - cy ) sin i cos (+ - K6) [cos (Q - K6) - 2 s in  (+ - K6)] (cos 1 + sin 1 s in  (+ - K6) 

a:’2 cos2 i 
~~ 

a2z 7 

2 = Q2 

2 sin (+ - K ) cos (+ - K ) sin i s in  (+ - K6) cos (+ - K ) [cos 2 .  1 + 2 sin2 i sin2 (+ - K6)] 6 
c 

cos2 i 
’ ‘6 6 6 

+ Q5 cos i 
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TABLE OF NOTATIONS 

Mixed Variables  

s i n  8 = -sin (K7 - f) s i n  i 

___- 
2 2 (K - f) sin i 7 

- .- 
s i n  K6 cos (K7 - f )  - s i n  (K7 - f )  cos i cos K6 

___ _.___ 
s i n  4 = -~ -- 

2 .  2 1 - s i n  1 s i n  (K - f) J 7 

s i n  K cos i s i n  (K7 - f )  + cos K6 cos (K7 - f )  6 cos + = _ _  
2 .  . 2  

1 - s in  1 s i n  (K7 - f )  J 
3 w = K  

K4 s i n  i cos (K7 - f )  
v = I_ 

2 .  2 1 - s in  1 s in  (K7 - f )  J 
+ s i n  (+ - K,) s i n  i 

s in  8 = v 

2 2 
/ o s  i + s in  ( 4  - K6) sin2 i 

cos i 

J o n [ +  - -K6) s in2 i 
COS e = 

tan e = tan i s in  ( 4  - Ks) 
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2 2 2  {Jos i +  sin i sin (+ - K 6 ) 
. .  Q4 = r  = 

cos i cos K7cos (+ - K6) - sin K7 sin (+ - K6) 

v = K4 sin i cos (+ - K ) 6 

, / k q  sin K7 cos  i cos (+ - K6) + cos K7 sin (+ - K6) 
u =  

2 2 2 cos  i +  sin i s in  (+ - K ) 6 
K4 

Poincare‘ Variables 

2 2 . -  - “7 

sin i = 
k -a6 

2 2 1/2 
(“3 + “4) “5 

2 2  
6 7  

c o s i  = 1 -  
k - a  - L Y  

a3 a7 - 0  CY 4 6  sin K = 
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(r sin+-@ c o s +  4 3 

(r4cos 9 + a  sin 9 
COS (+ - K6) = 

/- f f 5  

tan 0 = 
2 2  k - a  -a  6 7  2 2  

5 

-a3 -a4 1 / 2  a 

(a sin + -a3 cos +) 4 

2 2  
k - a 6 - a 7  2 2 

a 1 /2  - a 3 - a 4  
5 

cos e = 
2 2  k - a  

- a 3  2 2  - a 4 )  (a3sin + +  a4cos +) 2 
- ( 2  1 / 2  

a 5  

z z  

( a  sin + - a3 COS 9) 4 

sin e = 
2 2  

2 2 k - a  - a  
- a 2  - a  ) (rr3sin + +  (r4cos+) 

3 4  
5 a 

, 
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2 2  
- (ff s i n +  -a cos+)  (k - ff6 - ff7) 

_. . 3 
.- - 

4 __ -- sin (K7 -f) = 

/ q ( k  - ffi -a$2 
alp 5 

1’2 4- [ ( k - f f i - f f 7 )  2 ( f f 7 ~ i n + - f f 6 ~ o s + ) - a ~ ’ 2 ( f f 3 f f 7 - f f 4 f f 6 )  ( f f 4 c o s + + f f 3 s i n b )  
_ _  IJ=- - - -  - _ _  ._ _ _ _  5 ff 

- 
2 

k - a 2  - C Y  7 2 2  2 
- - a3 -a 4) ( a  4 cos + + a3 sin +) 

5 CY 
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